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inequality are clarified. For similar analogs of the Jackson inequality negative
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1. INTRODUCTION

It is known that piecewise monotone analogues of the Whitney
inequality sometimes are true are sometimes are false; see, e.g., [ 5, 12, 13]
for the details. We are going to investigate the same problem here for the
piecewise g-monotone case with ¢>1, in particular when ¢=2, for
piecewise convex approximation. To this end we formulate four Whitney-
type propositions and investigate all cases of their validity. We also prove
some negative results for two Jackson-type propositions. For some other
negative results see Zhou [15]. For the “pure” (that is not piecewise)
g-monotone approximation with ¢ > 1, see, e.g., [12].

2. NOTATIONS AND STATEMENT OF THE MAIN RESULTS

2.1. Notations
Let l:=[ —1,1]; C©:=C be the space of continuous functions f: | — R,
with the uniform norm

I/ =max | /()]s
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let P, be the space of algebraic polynomials of degree <; and let
E,(f):= inf |f=p,l
pneIP’n

be the error of the best uniform approximation of feC; C»:={f:f"
eC}, reN.

For se N we denote by Y, the set of all collections Y:={y,}i_; of s
distinct points y;, such that —1<y,< .- <y, <. Foreach Y={y;}{_,
e Y, put

H(x):=H(x; Y) =[] (x—y,).
i=1
Set YV:={JZ,V,. Let YeV, geN. For fe C'? we will write fe A9(Y),
iff
SOx) (x; Y) =0, xel

For feC (not necessarily fe C?) we will write fe AP(Y), iff for every
v=0,..,s and for each collection of ¢g+1 points z;,€[y,,1, .1,
j=0, ..., g, the inequality

(_1)v [ZO,v’ ey Zq,v;f] 20

holds, where y,:=1, y,,;:= —1, and

[IO’ Rt tm; f]

is the divided difference of order m of a function f at the knots ¢, ..., £,,.
Evidently, when feC?, both definitions of 4?(Y) coincide. Note that
AMD(Y) is the set of piecewise monotone functions on [ and A®(Y) is the
set of piecewise convex functions on [.

For YeVY and fe A9(Y) set

Ei:l)(ﬁ Y) = 1nf Hf_ Pn H5

pedN(Y)NP,

the error of best uniform piecewise g-monotone approximation of f.
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Finally denote by

k

> (—ka(’j‘.) flx+h)

Jj=0

wi(fit):= sup max , t=0,

hel[0,t] xe[—1,1—kh]

the kth order modulus of continuity of a function f'e C.
Everywhere below,

keN, (r+1)eN, seN, geN.

2.2. Whitney-Type Propositions
For e C" the Whitney [ 14] inequality

Epyra(f) el r) o 75 1) (2.1)

is well known, where c(k, r) =const, depending only on k and r; see, e.g.,
(4.5) in [2, Chap. 6].

Here we formulate two Whitney-type propositions: the “strong” Proposition
Wik, r,s,q) and the “weak” Proposition W(k,r,s,q, Y). Then we
formulate two auxiliary propositions, the use of which will be discussed in
the next Section 2.3. These four propositions sometimes are true, sometimes
are false. In Theorem 2 we will clearly all cases where Whitney-type
propositions are true or false. In Theorem 3 we will clearly the same for the
auxiliary propositions. To illustrate Theorems 2 and 3 we formulate
Theorem 1, which is a particular case, say the case (s=4, ¢=0).

ProrosiTiON W(k,r, s, q). There exists a constant B=B(k,r, s, q) such
that for each Ye Y, and f e C n AD(Y) we have

EQ . (fY)<Bo(fO;1). (2.2)

ProrosiTioN Wik, r,s,q, Y). Let YeY,. There exists a constant B=
B(k,r, s, q, Y) such that for each f € C") n AD(Y) the inequality (2.2) holds.

ProrosITION A(k, r, s, q). Propositions W(k,r,m,q) are true for all
m=1,..,s.

ProrosITION A(k,r, s, q, Y). Let YeY,. Propositions W(k,r,m,q, Y,,)
are true for all m=1, ..,s and Y,, €Y, such that Y,, =Y.

THEOREM 1. Let q=6 and s=4. The truth table of Propositions W(k,r,s, q),
Wik, r,s,q,Y), Ak, r,s, q) and A(k,r, s, q, Y) has the form
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where “+7 stands for the cases where Propositions W(k, r, s, q) and
Al(k, r, s, q) are true, and hence, for each Y €Y, Propositions W(k, r, s, q, Y)
and Ak, r, s, q, Y) are true as well, “@” stands for the cases where
Propositions W(k, r, s, q) and A(k, r, s, q) are false, but Propositions
Wik, r,s, q, Y)and A(k, r, s, q, Y) are true for each YeY; “©” stands
for the cases where Propositions Wik, r, s, q) and A(k, r, s, q) are false,
Proposition A(k, r, s, q, Y) is false for each YeY,, but Proposition
Wik, r, s, q, Y) is true for each YeY; “—" stand for the cases, where
Propositions Wik, r, s, q, Y) and A(k, r, s, q, Y) are false for each Ye Y,
and hence Propositions Wik, r, s, q) and A(k, r, s, q) are false as well.

We break up all collections (%, r, s, ¢) into four types.

DerFiniTION 1. We will say that a collection (&, r, s, ¢) is of type “ +  iff
(k=1), or (k+r<gq), or (g+s<r), or (r=¢g+s—1, k=2); “©”, iff
(r<g<r4+k—1<g+s), or (r=q, 3<k<s+2);, “=7, iff (¢+s—k<
r<gq), or (r=q, k=s+3); “®” in all other cases.

THEOREM 2. In the case of type “ +” Proposition W(k,r, s, q) is true; in
all other cases Proposition Wk, r,s, q) is false. In the cases of type “—"
Proposition W(k,r,s,q, Y) is false for each YeY_; in all other cases

Proposition W(k,r, s, q, Y) is true for each Ye Y.

For ¢=1 Theorem?2 is known; see, e.g., [5, 12, 13]. For ¢>1
Theorem 2 follows from Lemmas 3.2, 3.5, 4.1, and 4.2 below.
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THEOREM 3. In the cases of type “+” Proposition A(k,r, s, q) is true; in
all other cases Proposition A(k, r, s, q) is false. In the cases of types “©” and
“—" Proposition A(k,r,s,q, Y) is false for each YeY; in all other cases
Proposition A(k,r, s, q, Y) is true for each YeY,.

R

We shall not prove Theorem 3, since Theorem 3 is a trivial corollary of
Theorem 2.

2.3. Jackson-Type Propositions

Everywhere below n e N.

ProrosiTION J(k, 7, 5, q). There exist two constants B= B(k, r, s, q) and
N=N(i,r,s,q) such that for each YeY,, feCO nAD(Y), and n= N we
have

EY(f: Y)<Blrcuk <f('); 1). (2.3)
n n

ProrosITION J(k, 1,5, q, Y). Let YeY,. There exist two constant B=
Blk,r,s,q,Y) and N=N(k,r,s,q, Y) such that for each fe C" A AD(Y)
and n= N the inequality (2.3) holds.

In Section 4 we will prove

THEOREM 4. In the cases of types “@”, “©”, and “—" Propositions
Jk, r, s, q) is false. In the cases of types “©” and “—" Proposition
Jk, r, s, q, Y) is false for each YeY,.

For ¢=1 Theorem 4 is known; see [5, 12, 13]. For the case (r=0,
k>¢q+1) Theorem 4 follows by Zhou [15]. The first part of Theorem 4 is
Lemma 4.1 below, the second part is Lemma 4.3.

Theorems 3 and 4 readily imply

THEOREM 5. If Proposition A(k,r, s, q) (A(k,r,s,q,Y)) is false, then
Proposition J(k,r, s, q) (J(k,r,s,q,Y)) is false as well

Remark 1. For g=1, Propositions A(k,r,s,q) and J(k,r, s, q) are
equivalent; the same is true for Propositions A(k,r,s, ¢, Y) and
J(k,r,s,¢q,Y). This follows by Newman [10], Iliev [6], Beatson and
Leviatan [ 1], Shvedov [13], and Dzyubenko et al. [4], [5].

Remark 2. About Jackson-type propositions with ¢>1, the authors
know only one positive result. Kopotun et al. [7] proved the truth of
Proposition J(k, r, s, q, Y) for the case (k+r<3, ¢=2); moreover, they
proved, that it holds with B or N independent of Y.
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2.4. Some Relationships

In the sequel we will have constants ¢ that may depend only on k, r, ¢,
s, or some of these parameters. They may differ in different occurrences,
even in the same line. We will denote by By, B, B}* positive constants
that depend only on k, r, s, ¢, and Y.

We denote by L(x, f; t,, ..., t,,) the Lagrange polynomial of degree <m,
that interpolates a function f at the points #,, ..., t,,.

Without special references we will often use the following well-known
relations. The reader may find these relations in the monograph of DeVore
and Lorentz [2].

For the divided differences [ ¢,, ..., Z,,; ] we have (see [2, Chap. 4, (7.3),
(7.7), and (7.4)])

f(tm) _L(tm’ fa tO’ e Z‘mfl).

(L —10) -+ (=1 _1)

If, for all j=1,..,m, t;>¢;_; and f(t;) f(¢;_,) <0, then
St [ty s ts f1>0.
If 1,e[a,b], j=0,...,m, and f € C"(qa, b), then

[an cees tm; f] =

1
[Zos oo L3 f] =m—!f(’”)((9), 0e(a,b).

For the kth modulus of continuity w,( f; ¢) of a function '€ C we have (see
[2, Chap. 2, (7.5), (7.13), (7.12)]) if r >k, then

@,(f; 1) 2" (£ 1),
whence
ol f ) <25 || f -
If fe C’, then
@, il i 1) ST (f 75 1),
and
(i<t f7].

For each polynomial p, € P, we have (see [ 2, Chapter 4, (1.2)]), Markov’s
inequality

Ipnll <n® |p,|.
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Dzyadyk’s inequality [ 3], (see also [2, Chapter §, (2.15)]). For each ye R,

PPyt < CO) Ipapi .

where C(y) depends only on y, and

For feC™ and its polynomial of best approximation PX, Leviatan’s
inequality [ 8], (see also [2, Chapter 8, (4.17)]),

Cc
I =PE) prl S E, (f"),

holds. This implies for each polynomial p, € P,

I = p) /),,H< E, (f)+c|f=pal, (24)

since ¢ (P —pi) po| < IPy¥ = pal 21— pal.-
We will also use the well-known inequality, for fe C and [«, b] <,

I/l <elb—a)' = (Ex1(f) + max |f(x)]), (2.5)

x€la,b]

which is a consequence of the simple estimate

[PEA(6)| < PEs(x) = /()] + /)]
<E(f)+ max |f()] =ik xelab]

Indeed, by [ 2, Chapter 2, (2.10)],

IfI <1 f =Pl + 1PE A S Ex1(f) +cMb—a) " <ci(b—a)' "

3. POSITIVE RESULTS

LemMA 3.1. Let YeY,and k<q. If f€ AD(Y), then
E@ (fs Y)<colfi 1),

where ¢ =c(k, 0) is the constant in Whitney inequality (2.1).
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Proof. Since k—1<gq, then E? |(f, Y)=E,_,(f), hence by (2.1)

EQL (L Y)=E_(f)<ck0) o (fi1). 1
Lemma 3.2. In the cases of type “+7 Proposition W(k,r, s, q) is true.

Proof. We prove Lemma 3.2 by induction on ¢. Recall, for ¢g=1
Theorem 2 is valid, hence Lemma 3.2 is valid as well. Assume that
Lemma 3.2 is valid for some number ¢ — 1 > 1 and prove it for the number
g. To this end we take a collection (k, r, s, ¢) of type “+”. If r=0, then
Lemma 3.2 follows from Lemma 3.1. So let r #0. Then by Definition 1 the
collection (k,r—1,s, g —1) is of type “+” as well, and hence our assump-
tion implies, that Proposition W(k,r—1,s,g—1) is true. Therefore, for
each Ye Y, and feC” nAD(Y),

EQ-D,(f, Y)<Bk,r—1,5g—1) ol f7; 1), (3.1)

since evidently f'e C"~ Y nA4“=Y(Y). For each polynomial p,,, ;€
Piir_1 0 A9(Y) we have

—1
p;c+r—1 € Pk+r—2 mA(q )a

Piir—1—Pisr—1(0)+f(0)=:pryr 1 EPxy,y 0 AD(Y),
S = Bera0) = [ (0= Pl 1(a)) i
whence

8, (L) SEELD(fY).

This inequality and (3.1) imply the truth of Proposition W(k, r, s, ¢), with
a constant B(k, r,s,q) < Bk, r—1,s,g—1). |

Lemma 3.3. Let YeY,, g>1 and k=q+s. If fe AD(Y), then

E, ((f)<ByE;_i(f).

Proof. Let us add to the points y,, ..., ¥, some new points: put

yst1 . yst1
q_lﬂ ys+2':ys_2q_la"'a.yq+s—1:_1'

Yo=:1, yoi1:=y,—
Set

Jv:z(yva yvfl)s V=1,---,S+q_1§ L(X):ZL(X;ﬁyO,..., yq+s71)'
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Note that there exists a least one number v* such that
L9(x) HI(x)<0 (3.2)

for all xeJ,«. Indeed, otherwise the derivative L(x) would change the
sign at least s times, but deg L?(x) <s— 1.

Now let us divide the interval J,« by ¢ + 2 equidistant points 75 = «, ...,
fy41=Yye_1. Put

Pa—1(X):=L(x; fity, s b)), 8(x) :=f(x) = py_1(X).

Since f€ 49(Y), then [x, 1y, ... 1,; f]11I(x) >0, x€J,«, hence for xeJ .
we get

-

gx)(x) [[ x—=1))=]] (x—=1;)* [ 11, s tg, x3 f1H(x)=0. (3.3)

Jj=1 J

1

Put

Lo (x):=L(x; & Yos v Vgrs—1)5 T;:= (1, t;41), j=0,..q.
Then there is a number j, such that for xe T, .
q
L (x) (x) [] (x—1;)<0. (3.4)
j=1

For otherwise ¢ + 1 points 0, € T} exist, such that 0,> 0, _, L,(0;) L,(0;_,)
<0,j=1,..,¢q,and Ly (0,) I1(0,) >0, therefore

0<[0,..0, L1110, =ql'L£;”(9) 11(0,) (3.5)

for some OeJ¥, but since LY =LY and I1(0,) II(0)>0, then (3.5)
contradicts (3.2).
It follows from (3.3) and (3.4) that

g(x) L (x)<0, xeT (3.6)

Jx?
therefore one can write
lg(x)| <|g(x) — Ly (x)|=f(x)—L(x)l, xeTj,.

Denote by |J]| the length of the shortest among intervals J,, v=1, .., k— 1.
Then, for each polynomial P, _, € P, _, we have



198 PLESHAKOV AND SHATALINA

|/(x) = L(x)| = [(f(x) = Pr_1(x)) = L(X, f=Pr_15 Yo s Vi1

< |f=Peil <1 Tk <|2J|>k1>

= BY | f=Prall,  xel,
hence
If= LI < BYEg (/)
whence
lg(X) <BVE,_1(f), xeT,. (3.7)

Since the length of 7 is greater than a constant B¥*, then (3.7) and (2.5)
yield

Igll < ByEy_1(f)
Thus
E, \()<If=psall=1gl<ByE _1(f) |
LemMMA 3.4, Let YeVY,, g>1 and k<q+s. If fe AD(Y), then
E@ (f; Y)<Byoy(fi1).

Proof. For k<g Lemma 3.4 follows from Lemma 3.1. For g<k<qg+s
Lemma 3.4 follows from Lemma 3.3, Whitney inequality (2.1) and obvious
relationships

Eq+s—l(f) gEk—l(f)a Egcqll(.f; Y) <E£1ql1(f; Y) :Eq—l(f)' l

Lemma 3.5. In the case of type “+7, “@” and “O” Proposition
Wik, r,s, q, Y) is true for each YeY,.

One proves Lemma 3.5 in the same way as Lemma 3.2, applying
Lemma 3.4 instead of Lemma 3.1.
4. NEGATIVE RESULTS

4.1. Cases “@®”

We will use the arguments from [5].
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ExampLE 4.1. For every n and 4 >0, and for each ¢, 5, and ¢ — 1 <r <
qg+s—2, there is a collection Y(n,r, A,5s)=: YeY, and a function
Jora=:€CY A AD(Y) such that

ED(f Y) = Awy(f75 1) = A2 7520, (£ 1), k=2, (4.1)

Proof.  Without any loss of generality assume n>=r+ 1. We take be
(0, 1) so that

1 o
4bn®r D A+ 1)) 7

and fix an arbitrary collection Y of points y; such that —1+b=y,>
Y, > - >p.> — 1. Set

Oy a(x) 1= (x = )"

f(x)::(xyl)r+1::{Qr+l(X), if x> —1+b,

0 if x<—1+b.

Obviously, feC" N AD(Y). For an arbitrary polynomial p, € 49(Y) n
P, put

Rn(x) = Qr+1(x) _pn(x)

and consider the divided difference [y, ... ¥, 4245 RY97]. Since p, €
AD(Y), then p@(p;) =0, i=1,r+2—q, whence [y, ., ¥, 424 pL]1=0.
Besides, clearly,

o 1+ Dt
[V1s e Vira—gs Q%11 T (r+1—gq)
Le.
(r+1)!
PR =
[yln yr+2—q n ] (r+1_q)‘

Hence there exists a point de(—1, —1, +5) such that
RUFD(O)=(r+1=q)! [ P15 Vys2ogs RPT=(r+ 1)L

Reasoning similarly to Lorentz and Zeller [9] (see also Shvedov [13]),
we apply Markov inequality and get

(r+ 1)1 =R DO) < 1Ry | 20D

<V f=pul + 1/ = Qria ) =n? " D(I f = pul + 574,
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whence

(r+1)! .
1= pall > Sty = 7

On the other hand,
o)1) =wy)(fP =00 1) <2 | fP =00 || =4(r+1)! b.
Therefore

f=pal L b
oS5 1)” 4> D T 4(r 1))

Remark. The corresponding example for ¢=1 was constructed by
Shvedov [13].

COROLLARY. For each q, r<gq, s, n and A>0 there is a collection
Y(n, A, s, q)=: Ye Y, and a function f, 4 ,=: f€ CYnAD(Y) such that

ED(LY)ZAw, 0 (f75 1)

>20F1=r=kgoy (FO: 1), k=q+1—r. (4.2)

Indeed, for r=¢ — 1 such function is constructed in Example 4.1; for r <
g — 1 one can take the same function and use the inequality w,(f“~Y; 1)

2 COq+ 1 —r(.f(r); 1)

ExamPLE 4.2. For every n and 4 >0, and for each s and ¢, there is a
collection Y(n, A,s,q)=:YeY, and a function f, , (x)=:/eC"”n
A(Y) such that

EDfY)Z2 Aoy(f7: 1) 2 A27 P (fO 1), k=3, (43)

where r=¢g+s— 1.

Proof. Without any loss of generality we assume n>r+2. We take
be(0, 1) so that

1 b
_ =4
As+ 1) b2 D 4(r g2y




PIECEWISE WHITNEY-TYPE INEQUALITIES 201

and fix an arbitrary collection Y of points y; such that —1+b=y,>
Y, > - >y, > —1. Set

0, 12(x) :=(x— J’1)r+2§

f(x x yl)r+2. {Qr+2( ) if X = _1+b,

0, if x<-—1+5b.

Obviously feC” N AD(Y). For an arbitrary polynomial p,eP,n
AD(Y) put

R,(x) :=pa(x) = O, 15(X)

and consider the divided difference [y, ..., ys41; R'?], where y, ., := — 1.
Since p, € A9(Y), then p'?(y,)=0, i=1, s, whence

(q)( 1)
[yla' > ys+lap£zq)] _ﬁ>o

Put

(r+2)!
s+ 1)

(X =Y 1) H(x)

and note that

S(S)(x) Q(q+s)(x)

_(r+2)!
Tos+1

(Y1=y2)+ 1=y + -+ (V1= Ysi1))

Therefore,
_[yls' v Vsa1s Qr+2
1
:[yla'") ys+l;s_Q£qJ£l]:;(S(S)( ) Q£q++23)( ))

2)! .
25211;!((y1_y2)+(y1_y2)+ +(y1_ys+l))>(i’+ )

Hence there exists a point e (—1, —1 + ) such that

b.

|
RIYD(O) =51 p1s s Yogrs RYP] ZM
N

+1
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Applying Markov inequality we get

|
2 < R 0) < R, | 2

SUf=pall +1f = Qryal) 27+
=(If=pal +0"2) n?+ D,

whence

b(r+2)!

r+2
(s+1)n2(’+1)7b :

If = pal =

On the other hand,
o3(f7 D) =5(fO =0 s 1) <8I/ —0U), || =4b>(r +2).
Therefore

Lf=pall 1 LA
w3(f7; 1) 7 4b(s+1) 2T+ 4(r+2)!

Example 4.2, Example 4.2 and its Corollary lead to

Lemma 4.1. In the case of type “@”, “©” and “—" Propositions
Wik, r, s, q) and J(k, r, s, q) are false.

42. Cases “—7

Everywhere below we will use the following notations. For a fixed
collection Ye Y, put

)= V)= [T () (== ¥#00)
d:=d(Y):=3min{l -y, y,— .},
if s> 1. If s=1, then we put
I (x):=1, d:=dY):=31—|y]).
Put
My:=My(Y):=|11], M:=M(Y):=1,(y,)
and note,

O<M<My<2°~ L
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ExampLE 4.3. For every n and 4 >0, and for each s, Ye Y, k>s+1
and g, there is a function f(x) = f(x; ¢, k, n, Y, A) such that fe AD(Y)n
C@—Y and

ED(LY)>Awg(f97 D5 1). (44)

Proof.  Without any loss of generality assume n >k + g —2. For a fixed
be(0,d) set

0ue o)1= 3) =y [ =™ =) 1)
(x—y,—b)*: _{0 if xely,, yi+b],
. x—y,—b, otherwise;
1 x _ "
gl i=gln b iy | (o= (v =) T )

Clearly, geA4‘9(Y)nC“=Y, For an arbitrary polynomial p,eP,n
AD(Y) put

Fa(X) 1= pu(X) = Oy 4 (x)
and observe that
Vglq)(yl):_nglq(J’l) bIl,(y,)=bM. (4.5)
Applying Markov inequality
IrO 1 <n? |
we get

bM =r(y,) <n? |r,|,

whence

7 Sl < llp,— gl +llg— Qs gl

297 IM, pnitb
<lpu=gl+ T —pr | i+ b dusIp, =gl + Mob?,

»1

1e.

bM<1 _Mob”2q>. (4.6)

bM
P 811>z — Mob® = -

n-4
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On the other hand we have
(g9 1) =gV — 04 P 1) <2 gl — 0l V||

+b
=2kfy1 (b+ y,—u) Hy(u) du <2~ "My b% (4.7)

Y1
Now, in order to prove (4.4) we take

n

1 Md 1\
b"'ZZkMO(A+1)< ) ) S(x):==g(x;b,),
and note that b, <d. It follows from (4.6) and (4.7) that

12— bnM< 1> 1 A+]
> - - A.
o S0 7 e\ 72 ), =g oA

COROLLARY. Foreachs,q, YeY,, r<q, k>q+s—r,nand A>0 there
is a function f(x)= f(x; q, 1, k, n, Y, A) such that f € AD(Y) A C" and

ED(f Y)> Awg(fT; 1). (4.8)

Indeed, for r=¢—1 such function is constructed in Example 4.3; for
r<q—1 one can take the same function and use the inequality

Ok ri1—o( U7 Z 0 (S5 1).

ExampLE 4.4. For every n and 4 >0, and for each s, Ye Y, k>s+2
and ¢, there is a function f(x) = f(x; ¢, k, n, Y, A) such that fe A9(Y)n
C and

ED(f: Y)> Ao (f9; 1). (49)

Proof. Without any loss of generality assume n>k +¢— 1. For a fixed
be(0,d) set

Qs+q+2(x) = Qs+q+2(X; b)

1 x
= L e (= )= 8) )
o, it (x—y,)?*<b?
(x=y)?=0%), = {(x— y1)?—b2 otherwise;
g(x)=:g(x; D)
1

(g—1)! r (x—u)?~" ((u—y,)? =b) ;. 1I(u) du.
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Clearly, ge A9(Y) n C?. For an arbitrarily polynomial p, e P, n 4“9(Y)
put

Fa(X) 1= pp(X) = Qg1 g4 2(x).
Since p, € 4A9(Y), then p?*Y(y,) >0, whence
rdtO(y) =piTi(y 1)_Q§q++qllz(y1)
> — QU (p) =0T (yy) = b2I11(y,) = D>M. (4.10)
Applying Markov inequality

I+ D <D i |,

we get
M < [rg* D <n 7D |, |,

whence

Mb?
Saro<Irall <Ipa—gl =g = Csuyual

2970, kb
<lpa—gl+ =0 [ (2= (=) — ) d
(q 1) »

<llp,— gl + Myb*,

where we used the identity 77(u) =(u— y,) I1,(u). Hence

Mb? Mb? Mybh2n2@+D
pn—g|>nz(q+1)—Mob“=n2(q+l)<1— u > (4.11)
On the other hand
D89 1) = (g0 — 09,1 1)
<2* Hg(q)_nglq+2H <2FM b, (4.12)

In order to prove (4.9) we take

Md 1\2(¢+D
bR O
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and note that b, <d. It follows from (4.11) and (4.12) that

lp.—fIl _ biM 1 1 A+1
Cok(f(q);l)an(q“) _5 Zk_lbflMo: d > A. |

Example 4.4, Example 4.3 and its Corollary lead to
Lemma 4.2. In the cases of type “—" Propositions W(k,r, s, q, Y) and
Jk,r,s,q, Y) are false for each Ye Y.

Thus the proof of Theorem 2 is completed.
To end the proof of Theorem 4 we have to consider cases of type “O”.

4.3. Cases “©”

Remark, we do not have the cases of type “©” when s=1.

ExampLE 4.5. For every n and for each s #1, Ye Y, k> 2 and ¢, there
is a function f(x) :=f(x; k, n, ¢, Y) such that fe 49(Y)nC¥~" and

1 1
ED(fY)> By~ o <f(‘1”; n). (4.13)

Proof. We use the notation of Example 4.3 and repeat its arguments up
to (4.5). Thus we have

r(y1)=bM.
Using Dzyadyk inequality
rP(y) pUy) <c rii=Ppi=t,
and Leviatan inequality (2.4), we get

bMpi(y,)<c |rid=Ppi=1|
<cll(pld= V=g D) pai=t+c (g4 =04 ) pi
¢ (@a—1
<c|p,—zll +FEn—q+l(g )

+elpi= ' Ig =P — 0Pl

c 2

_ _ C
<clpa—gll+ =1 1897V = Q4 VI <c lpa— gl + .
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On the other hand

1 1 1
wk<g(q1);n><w < @=b_ Qy{fql);n> <Q§~q+q1);>

<2* \lg("*”—Q("*”HJr 1037,

s+q s+q
1
b*+— ).
()

Thus

1p,— gl n?

1\~ 1
Wy <g(q_1); n> c<b2+nk>

bM(1 — y?)9? b
DMA=Y)"" o gp,— P

1\ ' 1 ’
b2+ — h%+—

where we used the inequality p,(y;)>./1— y3/n. Now, to prove (4.13) let
us take

1
. chpZ(yl)nql—c<b2+k>
> " *

—C

So we obtain

|pn—f1 7~

) 1
Wy <f(ql); n>

> ZBYn(k/Z)fl —c*

c*

= B -1 <2_ 1>>Byn("/2>—1

Byn* -
for all n= N := N(Y), where the integer N is chosen so that
c* < ByN®»=1 by<d, Nzk+q—-2.

Thus for n> N(Y) the inequality (4.13) is proved. For n<N(Y) (4.13)
follows from the inequality E(f: V)= EW(f: Y). 1
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COROLLARY. Foreachs#1, YeY,, q,r<q, k>q—r+1 and n there is
a function f(x)= f(x; ¢, k, r,n, Y) such that fe A9(Y)C" and

1 1 1 1
ED(f.Y)> BY”(k“ilfq)/z;wk <f(r); n> = BY\/’;?wk <f(r); n>'

Indeed, for r=¢g —1 such function is constructed in Example 4.5; for
r<q—1 one can take the same function and use the inequality

T § A P L VAL

ExampLE 4.6. For every n and for each s #1, Ye Y, k>3 and ¢, there
is a function f(x) :=f(x; Y, k, n, ¢) such that f€ 4(Y) nC'? and

E(q)(f Y)>B n(k/3)—1 <f(q) > (4.16)

Proof. We use the notation of the Example 4.4 and repeat its argument
up to (4.10). Thus we have

ratD(y) = b>M.
Using Dzyadyk inequality
rat () pit () <c Ir®pil,
and Leviatan inequality (2.4), we get
b*Mpi*(yy) <c |rPpi|

<cll(p? =g ) pil +c (g9 =0, 0) pil

<cllp.— g\|+ 2 Eno(8P)+c|pill g — 05 412l

ch?
<cllp,— g\|+ 189 =0 ol < llpu—gll +—.

On the other hand

(). 1 (q) (q) 1 (9) . 1
wk g ’Z <(X) Qs+q+2’£ +wk Qs+q+2’;

1 1
<2 IMobt [0, | <c <b3+nk>.

s+q+2
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Thus

1
. CMpitiy)bPnt—c (b +—
lp,—gln - n

N~ 1
wy <f("); n> ¢ <b3 +nk>

_ eMpiT ) O

1
Cc <b3 +nk>

bz
> cM(1 +y1)(q+1)/271—c*
b +—
n< +nk>
b2
=:4B,,71 —c*,
b +—
G
Now, in order to prove (4.14) we take
1
bnzzﬁa f(x):g(xabn)

So we obtain

lp.— /1

N >2Byn* -1 _o*
W <f(q); n>

o

23k

- (k/3)—1
for all n > N := N(Y), where the integer N is chosen so that
c* < ByN®»H=1 by<d, N=zk+qg—1.

Thus for n>= N(Y) the inequality (4.14) is proved. For n<N(Y) (4.14)
follows from the inequality E(f: Y) = EQ(f. Y). |

Lemma 4.2, Example 4.6, Example 4.5 and its Corollary lead to

Lemma 4.3.  In the cases of type “O” and “ —" Proposition J(k,r, s, q, Y)
is false for each Ye Y.

Theorem 4 is proved.
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