Piecewise Coapproximation and the Whitney Inequality ${ }^{1}$

M. G. Pleshakov and A. V. Shatalina
Saratov State University, 83, Astrakhanskaja, Saratov 410026, Russia
Communicated by Dany Leviatan

Received March 26, 1997; accepted in revised form January 31, 2000

Abstract

All cases of the validity of the piecewise q-monotone analog of the Whitney inequality are clarified. For similar analogs of the Jackson inequality negative results are proved. © 2000 Academic Press

Key Words: coapproximation; polynomial approximation.

1. INTRODUCTION

It is known that piecewise monotone analogues of the Whitney inequality sometimes are true are sometimes are false; see, e.g., [5, 12, 13] for the details. We are going to investigate the same problem here for the piecewise q-monotone case with $q>1$, in particular when $q=2$, for piecewise convex approximation. To this end we formulate four Whitneytype propositions and investigate all cases of their validity. We also prove some negative results for two Jackson-type propositions. For some other negative results see Zhou [15]. For the "pure" (that is not piecewise) q-monotone approximation with $q>1$, see, e.g., [12].

2. NOTATIONS AND STATEMENT OF THE MAIN RESULTS

2.1. Notations

Let $\mathbb{a}:=[-1,1] ; \mathbb{C}^{(0)}:=\mathbb{C}$ be the space of continuous functions $f: \mathbb{\square} \rightarrow \mathbb{R}$, with the uniform norm

$$
\|f\|=\max _{x \in \mathbb{D}}|f(x)| ;
$$

[^0]let \mathbb{P}_{n} be the space of algebraic polynomials of degree $\leqslant n$; and let
$$
E_{n}(f):=\inf _{p_{n} \in \mathbb{P}_{n}}\left\|f-p_{n}\right\|
$$
be the error of the best uniform approximation of $f \in \mathbb{C} ; \mathbb{C}^{(r)}:=\left\{f: f^{(r)}\right.$ $\in \mathbb{C}\}, r \in \mathbb{N}$.

For $s \in \mathbb{N}$ we denote by \mathbb{Y}_{s} the set of all collections $Y:=\left\{y_{i}\right\}_{i=1}^{s}$ of s distinct points y_{i}, such that $-1<y_{s}<\cdots<y_{1}<1$. For each $Y=\left\{y_{i}\right\}_{i=1}^{s}$ $\in \mathbb{Y}_{s}$ put

$$
\Pi(x):=\Pi(x ; Y):=\prod_{i=1}^{s}\left(x-y_{i}\right) .
$$

Set $\mathbb{Y}:=\bigcup_{s=1}^{\infty} \mathbb{Y}_{s}$. Let $Y \in \mathbb{Y}, q \in \mathbb{N}$. For $f \in \mathbb{C}^{(q)}$ we will write $f \in \Delta^{(q)}(Y)$, iff

$$
f^{(q)}(x) \Pi(x ; Y) \geqslant 0, \quad x \in \square .
$$

For $f \in \mathbb{C}$ (not necessarily $f \in \mathbb{C}^{(q)}$) we will write $f \in \Delta^{(q)}(Y)$, iff for every $v=0, \ldots, s$ and for each collection of $q+1$ points $z_{j, v} \in\left[y_{v+1}, y_{v}\right]$, $j=0, \ldots, q$, the inequality

$$
(-1)^{v}\left[z_{0, v}, \ldots, z_{q, v} ; f\right] \geqslant 0
$$

holds, where $y_{0}:=1, y_{s+1}:=-1$, and

$$
\left[t_{0}, \ldots, t_{m} ; f\right]
$$

is the divided difference of order m of a function f at the knots t_{0}, \ldots, t_{m}. Evidently, when $f \in \mathbb{C}^{(q)}$, both definitions of $\Delta^{(q)}(Y)$ coincide. Note that $\Delta^{(1)}(Y)$ is the set of piecewise monotone functions on \mathbb{a} and $\Delta^{(2)}(Y)$ is the set of piecewise convex functions on $\mathbb{1}$.

For $Y \in \mathbb{Y}$ and $f \in \Delta^{(q)}(Y)$ set

$$
E_{n}^{(q)}(f ; Y):=\inf _{p_{n} \in \Delta^{(q)}(Y) \cap \mathbb{P}_{n}}\left\|f-p_{n}\right\|,
$$

the error of best uniform piecewise q-monotone approximation of f.

Finally denote by

$$
\omega_{k}(f ; t):=\sup _{h \in[0, t]} \max _{x \in[-1,1-k h]}\left|\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} f(x+j h)\right|, \quad t \geqslant 0,
$$

the k th order modulus of continuity of a function $f \in \mathbb{C}$.
Everywhere below,

$$
k \in \mathbb{N}, \quad(r+1) \in \mathbb{N}, \quad s \in \mathbb{N}, \quad q \in \mathbb{N} .
$$

2.2. Whitney-Type Propositions

For $f \in \mathbb{C}^{(r)}$ the Whitney [14] inequality

$$
\begin{equation*}
E_{k+r-1}(f) \leqslant c(k, r) \omega_{k}\left(f^{(r)} ; 1\right) \tag{2.1}
\end{equation*}
$$

is well known, where $c(k, r)=$ const, depending only on k and r; see, e.g., (4.5) in [2, Chap. 6].

Here we formulate two Whitney-type propositions: the "strong" Proposition $W(k, r, s, q)$ and the "weak" Proposition $W(k, r, s, q, Y)$. Then we formulate two auxiliary propositions, the use of which will be discussed in the next Section 2.3. These four propositions sometimes are true, sometimes are false. In Theorem 2 we will clearly all cases where Whitney-type propositions are true or false. In Theorem 3 we will clearly the same for the auxiliary propositions. To illustrate Theorems 2 and 3 we formulate Theorem 1, which is a particular case, say the case $(s=4, q=6)$.

Proposition $W(k, r, s, q)$. There exists a constant $B=B(k, r, s, q)$ such that for each $Y \in \mathbb{Y}_{s}$ and $f \in \mathbb{C}^{(r)} \cap \Delta^{(q)}(Y)$ we have

$$
\begin{equation*}
E_{k+r-1}^{(q)}(f ; Y) \leqslant B \omega_{k}\left(f^{(r)} ; 1\right) \tag{2.2}
\end{equation*}
$$

Proposition $W(k, r, s, q, Y)$. Let $Y \in \mathbb{Y}_{s}$. There exists a constant $B=$ $B(k, r, s, q, Y)$ such that for each $f \in \mathbb{C}^{(r)} \cap \Delta^{(q)}(Y)$ the inequality (2.2) holds.

Proposition $A(k, r, s, q)$. Propositions $W(k, r, m, q)$ are true for all $m=1, \ldots, s$.

Proposition $A(k, r, s, q, Y)$. Let $Y \in \mathbb{Y}_{s}$. Propositions $W\left(k, r, m, q, Y_{m}\right)$ are true for all $m=1, \ldots, s$ and $Y_{m} \in \mathbb{Y}_{m}$ such that $Y_{m} \subseteq Y$.

Theorem 1. Let $q=6$ and $s=4$. The truth table of Propositions $W(k, r, s, q)$, $W(k, r, s, q, Y), A(k, r, s, q)$ and $A(k, r, s, q, Y)$ has the form

where "+" stands for the cases where Propositions $W(k, r, s, q)$ and $A(k, r, s, q)$ are true, and hence, for each $Y \in \mathbb{Y}_{s}$, Propositions $W(k, r, s, q, Y)$ and $A(k, r, s, q, Y)$ are true as well; " \oplus " stands for the cases where Propositions $W(k, r, s, q)$ and $A(k, r, s, q)$ are false, but Propositions $W(k, r, s, q, Y)$ and $A(k, r, s, q, Y)$ are true for each $Y \in \mathbb{Y}_{s}$; " \ominus " stands for the cases where Propositions $W(k, r, s, q)$ and $A(k, r, s, q)$ are false, Proposition $A(k, r, s, q, Y)$ is false for each $Y \in \mathbb{Y}_{s}$, but Proposition $W(k, r, s, q, Y)$ is true for each $Y \in \mathbb{Y}_{s} ;$ "-" stand for the cases, where Propositions $W(k, r, s, q, Y)$ and $A(k, r, s, q, Y)$ are false for each $Y \in \mathbb{Y}_{s}$, and hence Propositions $W(k, r, s, q)$ and $A(k, r, s, q)$ are false as well.

We break up all collections (k, r, s, q) into four types.

Definition 1. We will say that a collection (k, r, s, q) is of type " + " iff $(k=1)$, or $(k+r \leqslant q)$, or $(q+s \leqslant r)$, or $(r=q+s-1, k=2)$; " Θ ", iff $(r<q<r+k-1<q+s)$, or ($r=q, 3<k \leqslant s+2$); "-", iff $(q+s-k<$ $r<q)$, or ($r=q, k \geqslant s+3$); " \oplus " in all other cases.

Theorem 2. In the case of type " +" Proposition $W(k, r, s, q)$ is true; in all other cases Proposition $W(k, r, s, q)$ is false. In the cases of type "-" Proposition $W(k, r, s, q, Y)$ is false for each $Y \in \mathbb{Y}_{s}$; in all other cases Proposition $W(k, r, s, q, Y)$ is true for each $Y \in \mathbb{Y}_{s}$.

For $q=1$ Theorem 2 is known; see, e.g., [5, 12, 13]. For $q>1$ Theorem 2 follows from Lemmas 3.2, 3.5, 4.1, and 4.2 below.

Theorem 3. In the cases of type "+" Proposition $A(k, r, s, q)$ is true; in all other cases Proposition $A(k, r, s, q)$ is false. In the cases of types " \ominus " and "-" Proposition $A(k, r, s, q, Y)$ is false for each $Y \in \mathbb{Y}_{s}$; in all other cases Proposition $A(k, r, s, q, Y)$ is true for each $Y \in \mathbb{Y}_{s}$.

We shall not prove Theorem 3, since Theorem 3 is a trivial corollary of Theorem 2.

2.3. Jackson-Type Propositions

Everywhere below $n \in \mathbb{N}$.
Proposition $J(k, r, s, q)$. There exist two constants $B=B(k, r, s, q)$ and $N=N(i, r, s, q)$ such that for each $Y \in \mathbb{Y}_{s}, f \in \mathbb{C}^{(r)} \cap \Delta^{(q)}(Y)$, and $n \geqslant N$ we have

$$
\begin{equation*}
E_{n}^{(q)}(f ; Y) \leqslant B \frac{1}{n^{r}} \omega_{k}\left(f^{(r)} ; \frac{1}{n}\right) . \tag{2.3}
\end{equation*}
$$

Proposition $J(k, r, s, q, Y)$. Let $Y \in \mathbb{Y}_{s}$. There exist two constant $B=$ $B(k, r, s, q, Y)$ and $N=N(k, r, s, q, Y)$ such that for each $f \in \mathbb{C}^{(r)} \cap \Delta^{(q)}(Y)$ and $n \geqslant N$ the inequality (2.3) holds.

In Section 4 we will prove

Theorem 4. In the cases of types " \oplus ", " \ominus ", and "-" Propositions $J(k, r, s, q)$ is false. In the cases of types " \ominus " and "-" Proposition $J(k, r, s, q, Y)$ is false for each $Y \in \mathbb{Y}_{s}$.

For $q=1$ Theorem 4 is known; see [5, 12, 13]. For the case $(r=0$, $k>q+1$) Theorem 4 follows by Zhou [15]. The first part of Theorem 4 is Lemma 4.1 below, the second part is Lemma 4.3.

Theorems 3 and 4 readily imply
Theorem 5. If Proposition $A(k, r, s, q)(A(k, r, s, q, Y))$ is false, then Proposition $J(k, r, s, q)(J(k, r, s, q, Y))$ is false as well

Remark 1. For $q=1$, Propositions $A(k, r, s, q)$ and $J(k, r, s, q)$ are equivalent; the same is true for Propositions $A(k, r, s, q, Y)$ and $J(k, r, s, q, Y)$. This follows by Newman [10], Iliev [6], Beatson and Leviatan [1], Shvedov [13], and Dzyubenko et al. [4], [5].

Remark 2. About Jackson-type propositions with $q>1$, the authors know only one positive result. Kopotun et al. [7] proved the truth of Proposition $J(k, r, s, q, Y)$ for the case $(k+r \leqslant 3, q=2)$; moreover, they proved, that it holds with B or N independent of Y.

2.4. Some Relationships

In the sequel we will have constants c that may depend only on k, r, q, s, or some of these parameters. They may differ in different occurrences, even in the same line. We will denote by $B_{Y}, B_{Y}^{*}, B_{Y}^{* *}$ positive constants that depend only on k, r, s, q, and Y.

We denote by $L\left(x, f ; t_{0}, \ldots, t_{m}\right)$ the Lagrange polynomial of degree $\leqslant m$, that interpolates a function f at the points t_{0}, \ldots, t_{m}.

Without special references we will often use the following well-known relations. The reader may find these relations in the monograph of DeVore and Lorentz [2].

For the divided differences $\left[t_{0}, \ldots, t_{m} ; f\right]$ we have (see [2, Chap. 4, (7.3), (7.7), and (7.4)])

$$
\left[f_{0}, \ldots, t_{m} ; f\right]=\frac{f\left(t_{m}\right)-L\left(t_{m}, f ; t_{0}, \ldots, t_{m-1}\right)}{\left(t_{m}-t_{0}\right) \cdots\left(t_{m}-t_{m-1}\right)}
$$

If, for all $j=1, \ldots, m, t_{j}>t_{j-1}$ and $f\left(t_{j}\right) f\left(t_{j-1}\right)<0$, then

$$
f\left(t_{m}\right)\left[t_{0}, \ldots, t_{m} ; f\right]>0 .
$$

If $t_{j} \in[a, b], j=0, \ldots, m$, and $f \in \mathbb{C}^{(m)}(a, b)$, then

$$
\left[t_{0}, \ldots, t_{m} ; f\right]=\frac{1}{m!} f^{(m)}(\theta), \quad \theta \in(a, b) .
$$

For the k th modulus of continuity $\omega_{k}(f ; t)$ of a function $f \in \mathbb{C}$ we have (see [2, Chap. 2, (7.5), (7.13), (7.12)]) if $r>k$, then

$$
\omega_{r}(f ; t) \leqslant 2^{r-k} \omega_{k}(f ; t)
$$

whence

$$
\omega_{k}(f ; t) \leqslant 2^{k} \kappa\|f\| .
$$

If $f \in \mathbb{C}^{r}$, then

$$
\omega_{r+k}(f ; t) \leqslant t^{r} \omega_{k}\left(f^{(r)} ; t\right)
$$

and

$$
\omega_{r}(f ; t) \leqslant t^{r}\left\|f^{(r)}\right\| .
$$

For each polynomial $p_{n} \in \mathbb{P}_{n}$ we have (see [2, Chapter 4, (1.2)]), Markov's inequality

$$
\left\|p_{n}^{\prime}\right\| \leqslant n^{2}\left\|p_{n}\right\|
$$

Dzyadyk's inequality [3], (see also [2, Chapter 8, (2.15)]). For each $\gamma \in \mathbb{R}$,

$$
\left\|p_{n}^{\prime} \rho_{n}^{\gamma+1}\right\| \leqslant C(\gamma)\left\|p_{n} \rho_{n}^{\gamma}\right\|,
$$

where $C(\gamma)$ depends only on γ, and

$$
\rho_{n}(x):=\frac{1}{n^{2}}+\frac{1}{n} \sqrt{1-x^{2}} .
$$

For $f \in \mathbb{C}^{(r)}$ and its polynomial of best approximation P_{n}^{*}, Leviatan's inequality [8], (see also [2, Chapter 8, (4.17)]),

$$
\left\|\left(f^{(r)}-P_{n}^{* r}\right) \rho_{n}^{r}\right\| \leqslant \frac{c}{n^{r}} E_{n-r}\left(f^{(r)}\right),
$$

holds. This implies for each polynomial $p_{n} \in \mathbb{P}_{n}$,

$$
\begin{equation*}
\left\|\left(f^{(r)}-p_{n}^{(r)}\right) \rho_{n}^{r}\right\| \leqslant \frac{c}{n^{r}} E_{n-r}\left(f^{(r)}\right)+c\left\|f-p_{n}\right\|, \tag{2.4}
\end{equation*}
$$

since $c\left\|\left(P_{n}^{*(r)}-p_{n}^{(r)}\right) \rho_{n}^{r}\right\| \leqslant\left\|P_{n}^{*}-p_{n}\right\| \leqslant 2\left\|f-p_{n}\right\|$.
We will also use the well-known inequality, for $f \in \mathbb{C}$ and $[a, b] \subset 0$,

$$
\begin{equation*}
\|f\| \leqslant c(b-a)^{1-k}\left(E_{k-1}(f)+\max _{x \in[a, b]}|f(x)|\right), \tag{2.5}
\end{equation*}
$$

which is a consequence of the simple estimate

$$
\begin{aligned}
\left|P_{k-1}^{*}(x)\right| & \leqslant\left|P_{k-1}^{*}(x)-f(x)\right|+|f(x)| \\
& \leqslant E_{k-1}(f)+\max _{t \in[a, b]}|f(t)|=: \lambda, \quad x \in[a, b] .
\end{aligned}
$$

Indeed, by [2, Chapter 2, (2.10)],

$$
\|f\| \leqslant\left\|f-P_{k-1}^{*}\right\|+\left\|P_{k-1}^{*}\right\| \leqslant E_{k-1}(f)+c \lambda(b-a)^{1-k} \leqslant c \lambda(b-a)^{1-k} .
$$

3. POSITIVE RESULTS

Lemma 3.1. Let $Y \in \mathbb{Y}_{s}$ and $k \leqslant q$. If $f \in \Delta^{(q)}(Y)$, then

$$
E_{k-1}^{(q)}(f ; Y) \leqslant c \omega_{k}(f ; 1)
$$

where $c=c(k, 0)$ is the constant in Whitney inequality (2.1).

Proof. Since $k-1<q$, then $E_{k-1}^{(q)}(f, Y)=E_{k-1}(f)$, hence by (2.1)

$$
E_{k-1}^{(q)}(f, Y)=E_{k-1}(f) \leqslant c(k, 0) \omega_{k}(f ; 1) .
$$

Lemma 3.2. In the cases of type "+" Proposition $W(k, r, s, q)$ is true.

Proof. We prove Lemma 3.2 by induction on q. Recall, for $q=1$ Theorem 2 is valid, hence Lemma 3.2 is valid as well. Assume that Lemma 3.2 is valid for some number $q-1 \geqslant 1$ and prove it for the number q. To this end we take a collection (k, r, s, q) of type " + ". If $r=0$, then Lemma 3.2 follows from Lemma 3.1. So let $r \neq 0$. Then by Definition 1 the collection ($k, r-1, s, q-1$) is of type " + " as well, and hence our assumption implies, that Proposition $W(k, r-1, s, q-1)$ is true. Therefore, for each $Y \in \mathbb{Y}_{s}$ and $f \in \mathbb{C}^{(r)} \cap \Delta^{(q)}(Y)$,

$$
\begin{equation*}
E_{k+r-2}^{(q-1)}\left(f^{\prime}, Y\right) \leqslant B(k, r-1, s, q-1) \omega_{k}\left(f^{(r)} ; 1\right), \tag{3.1}
\end{equation*}
$$

since evidently $f^{\prime} \in \mathbb{C}^{(r-1)} \cap \Delta^{(q-1)}(Y)$. For each polynomial $p_{k+r-1} \in$ $\mathbb{P}_{k+r-1} \cap \Delta^{(q)}(Y)$ we have

$$
\begin{aligned}
& p_{k+r-1}^{\prime} \in \mathbb{P}_{k+r-2} \cap \Delta^{(q-1)}, \\
& p_{k+r-1}-p_{k+r-1}(0)+f(0)=: \tilde{p}_{k+r-1} \in \mathbb{P}_{k+r-1} \cap \Delta^{(q)}(Y), \\
& f(x)-\tilde{p}_{k+r-1}(x)=\int_{0}^{x}\left(f^{\prime}(u)-p_{k+r-1}^{\prime}(u)\right) d u,
\end{aligned}
$$

whence

$$
E_{k+r-1}^{(q)}(f, Y) \leqslant E_{k+r-2}^{(q-1)}\left(f^{\prime}, Y\right)
$$

This inequality and (3.1) imply the truth of Proposition $W(k, r, s, q)$, with a constant $B(k, r, s, q) \leqslant B(k, r-1, s, q-1)$.

Lemma 3.3. Let $Y \in \mathbb{Y}_{s}, q>1$ and $k=q+s$. If $f \in \Delta^{(q)}(Y)$, then

$$
E_{q-1}(f) \leqslant B_{Y} E_{k-1}(f)
$$

Proof. Let us add to the points y_{1}, \ldots, y_{s} some new points: put

$$
y_{0}=: 1, \quad y_{s+1}:=y_{s}-\frac{y_{s}+1}{q-1}, \quad y_{s+2}:=y_{s}-2 \frac{y_{s}+1}{q-1}, \ldots, y_{q+s-1}=-1 .
$$

Set

$$
J_{v}:=\left(y_{v}, y_{v-1}\right), \quad v=1, \ldots, s+q-1 ; \quad L(x):=L\left(x ; f ; y_{0}, \ldots, y_{q+s-1}\right) .
$$

Note that there exists a least one number v^{*} such that

$$
\begin{equation*}
L^{(q)}(x) \Pi(x) \leqslant 0 \tag{3.2}
\end{equation*}
$$

for all $x \in J_{v^{*}}$. Indeed, otherwise the derivative $L^{(q)}(x)$ would change the sign at least s times, but $\operatorname{deg} L^{(q)}(x) \leqslant s-1$.

Now let us divide the interval $J_{v^{*}}$ by $q+2$ equidistant points $t_{0}=y_{v^{*}}, \ldots$, $t_{q+1}=y_{v^{*}-1}$. Put

$$
p_{q-1}(x):=L\left(x ; f ; t_{1}, \ldots, t_{q}\right), \quad g(x):=f(x)-p_{q-1}(x) .
$$

Since $f \in \Delta^{(q)}(Y)$, then $\left[x, t_{1}, \ldots, t_{q} ; f\right] \Pi(x) \geqslant 0, x \in J_{v^{*}}$, hence for $x \in J_{v^{*}}$ we get

$$
\begin{equation*}
g(x) \Pi(x) \prod_{j=1}^{q}\left(x-t_{j}\right)=\prod_{j=1}^{q}\left(x-t_{j}\right)^{2}\left[t_{1}, \ldots, t_{q}, x ; f\right] \Pi(x) \geqslant 0 . \tag{3.3}
\end{equation*}
$$

Put

$$
L_{*}(x):=L\left(x ; g ; y_{0}, \ldots, y_{q+s-1}\right) ; \quad T_{j}:=\left(t_{j}, t_{j+1}\right), \quad j=0, \ldots, q .
$$

Then there is a number j_{*} such that for $x \in T_{j_{*}}$.

$$
\begin{equation*}
L_{*}(x) \Pi(x) \prod_{j=1}^{q}\left(x-t_{j}\right) \leqslant 0 . \tag{3.4}
\end{equation*}
$$

For otherwise $q+1$ points $\theta_{j} \in T_{j}$ exist, such that $\theta_{j}>\theta_{j-1}, L_{*}\left(\theta_{j}\right) L_{*}\left(\theta_{j-1}\right)$ $<0, j=1, \ldots, q$, and $L_{*}\left(\theta_{q}\right) \Pi\left(\theta_{q}\right)>0$, therefore

$$
\begin{equation*}
0<\left[\theta_{0}, \ldots, \theta_{q} ; L_{*}\right] \Pi\left(\theta_{q}\right)=\frac{1}{q!} L_{*}^{(q)}(\theta) \Pi\left(\theta_{q}\right) \tag{3.5}
\end{equation*}
$$

for some $\theta \in J_{v}^{*}$, but since $L_{*}^{(q)} \equiv L^{(q)}$ and $\Pi\left(\theta_{q}\right) \Pi(\theta)>0$, then (3.5) contradicts (3.2).

It follows from (3.3) and (3.4) that

$$
\begin{equation*}
g(x) L_{*}(x) \leqslant 0, \quad x \in T_{j_{*}}, \tag{3.6}
\end{equation*}
$$

therefore one can write

$$
|g(x)| \leqslant\left|g(x)-L_{*}(x)\right|=|f(x)-L(x)|, \quad x \in T_{j_{*}} .
$$

Denote by $|J|$ the length of the shortest among intervals $J_{v}, v=1, \ldots, k-1$. Then, for each polynomial $P_{k-1} \in \mathbb{P}_{k-1}$ we have

$$
\begin{aligned}
|f(x)-L(x)| & =\left|\left(f(x)-P_{k-1}(x)\right)-L\left(x, f-P_{k-1} ; y_{0}, \ldots, y_{k-1}\right)\right| \\
& \leqslant\left\|f-P_{k-1}\right\|\left(1+k\left(\frac{2}{|J|}\right)^{k-1}\right) \\
& =: B_{Y}^{*}\left\|f-P_{k-1}\right\|, \quad x \in \mathbb{0},
\end{aligned}
$$

hence

$$
\|f-L\| \leqslant B_{Y}^{*} E_{k-1}(f),
$$

whence

$$
\begin{equation*}
|g(x)| \leqslant B_{Y}^{*} E_{k-1}(f), \quad x \in T_{j_{*}} . \tag{3.7}
\end{equation*}
$$

Since the length of $T_{j_{*}}$ is greater than a constant $B_{Y}^{* *}$, then (3.7) and (2.5) yield

$$
\|g\| \leqslant B_{Y} E_{k-1}(f)
$$

Thus

$$
E_{q-1}(f) \leqslant\left\|f-p_{q-1}\right\|=\|g\| \leqslant B_{Y} E_{k-1}(f) .
$$

Lemma 3.4. Let $Y \in \mathbb{Y}_{s}, q>1$ and $k \leqslant q+s$. If $f \in \Delta^{(q)}(Y)$, then

$$
E_{k-1}^{(q)}(f ; Y) \leqslant B_{Y} \omega_{k}(f ; 1) .
$$

Proof. For $k \leqslant q$ Lemma 3.4 follows from Lemma 3.1. For $q<k \leqslant q+s$ Lemma 3.4 follows from Lemma 3.3, Whitney inequality (2.1) and obvious relationships

$$
E_{q+s-1}(f) \leqslant E_{k-1}(f), \quad E_{k-1}^{(q)}(f ; Y) \leqslant E_{q-1}^{(q)}(f ; Y)=E_{q-1}(f) .
$$

Lemma 3.5. In the case of type " + ", " \oplus " and " \ominus " Proposition $W(k, r, s, q, Y)$ is true for each $Y \in \mathbb{Y}_{s}$.

One proves Lemma 3.5 in the same way as Lemma 3.2, applying Lemma 3.4 instead of Lemma 3.1.

4. NEGATIVE RESULTS

4.1. Cases " \oplus "

We will use the arguments from [5].

Example 4.1. For every n and $A>0$, and for each q, s, and $q-1 \leqslant r \leqslant$ $q+s-2$, there is a collection $Y(n, r, A, s)=: Y \in \mathbb{Y}_{s}$ and a function $f_{n, r, A}=: f \in \mathbb{C}^{(r)} \cap \Delta^{(q)}(Y)$ such that

$$
\begin{equation*}
E_{n}^{(q)}(f ; Y) \geqslant A \omega_{2}\left(f^{(r)} ; 1\right) \geqslant A 2^{-k+2} \omega_{k}\left(f^{(r)} ; 1\right), \quad k \geqslant 2 \tag{4.1}
\end{equation*}
$$

Proof. Without any loss of generality assume $n \geqslant r+1$. We take $b \in$ $(0,1)$ so that

$$
\frac{1}{4 b n^{2(r+1)}}-\frac{b^{r}}{4(r+1)!}=A
$$

and fix an arbitrary collection Y of points y_{i} such that $-1+b=y_{1}>$ $y_{2}>\cdots>y_{s}>-1$. Set

$$
\begin{aligned}
Q_{r+1}(x) & :=\left(x-y_{1}\right)^{r+1} ; \\
f(x) & :=\left(x-y_{1}\right)_{+}^{r+1}:= \begin{cases}Q_{r+1}(x), & \text { if } \quad x \geqslant-1+b, \\
0 & \text { if } \quad x<-1+b .\end{cases}
\end{aligned}
$$

Obviously, $f \in \mathbb{C}^{(r)} \cap \Delta^{(q)}(Y)$. For an arbitrary polynomial $p_{n} \in \Delta^{(q)}(Y) \cap$ \mathbb{P}_{n} put

$$
R_{n}(x):=Q_{r+1}(x)-p_{n}(x)
$$

and consider the divided difference $\left[y_{1}, \ldots, y_{r+2-q} ; R_{n}^{(q)}\right]$. Since $p_{n} \in$ $\Delta^{(q)}(Y)$, then $p_{n}^{(q)}\left(y_{i}\right)=0, i=\overline{1, r+2-q}$, whence $\left[y_{1}, \ldots, y_{r+2-q} ; p_{n}^{(q)}\right]=0$. Besides, clearly,

$$
\left[y_{1}, \ldots, y_{r+2-q} ; Q_{r+1}^{(q)}\right]=\frac{(r+1)!}{(r+1-q)!},
$$

i.e.

$$
\left[y_{1}, \ldots, y_{r+2-q} ; R_{n}^{(q)}\right]=\frac{(r+1)!}{(r+1-q)!} .
$$

Hence there exists a point $\theta \in(-1,-1,+b)$ such that

$$
R_{n}^{(r+1)}(\theta)=(r+1-q)!\left[y_{1}, \ldots, y_{r+2-q} ; R_{n}^{(q)}\right]=(r+1)!.
$$

Reasoning similarly to Lorentz and Zeller [9] (see also Shvedov [13]), we apply Markov inequality and get

$$
\begin{aligned}
(r+1)! & =R_{n}^{(r+1)}(\theta) \leqslant\left\|R_{n}\right\| n^{2(r+1)} \\
& \leqslant n^{2(r+1)}\left(\left\|f-p_{n}\right\|+\left\|f-Q_{r+1}\right\|\right)=n^{2(r+1)}\left(\left\|f-p_{n}\right\|+b^{r+1}\right),
\end{aligned}
$$

whence

$$
\left\|f-p_{n}\right\| \geqslant \frac{(r+1)!}{n^{2(r+1)}}-b^{r+1}
$$

On the other hand,

$$
\omega_{2}\left(f^{(r)} ; 1\right)=\omega_{2}\left(f^{(r)}-Q_{r+1}^{(r)} ; 1\right) \leqslant 2\left\|f^{(r)}-Q_{r+1}^{(r)}\right\|=4(r+1)!b .
$$

Therefore

$$
\frac{\left\|f-p_{n}\right\|}{\omega_{2}\left(f^{(r)} ; 1\right)} \geqslant \frac{1}{4 b n^{2(r+1)}}-\frac{b^{r}}{4(r+1)!}=A .
$$

Remark. The corresponding example for $q=1$ was constructed by Shvedov [13].

Corollary. For each $q, r<q, s, n$ and $A>0$ there is a collection $Y(n, A, s, q)=: Y \in \mathbb{Y}_{s}$ and a function $f_{n, A, q}=: f \in \mathbb{C}^{(r)} \cap \Delta^{(q)}(Y)$ such that

$$
\begin{align*}
E_{n}^{(q)}(f ; Y) & \geqslant A \omega_{q+1-r}\left(f^{(r)} ; 1\right) \\
& \geqslant 2^{q+1-r-k} A \omega_{k}\left(f^{(r)} ; 1\right), \quad k \geqslant q+1-r . \tag{4.2}
\end{align*}
$$

Indeed, for $r=q-1$ such function is constructed in Example 4.1; for $r<$ $q-1$ one can take the same function and use the inequality $\omega_{2}\left(f^{(q-1)} ; 1\right)$ $\geqslant \omega_{q+1-r}\left(f^{(r)} ; 1\right)$.

Example 4.2. For every n and $A>0$, and for each s and q, there is a collection $Y(n, A, s, q)=: Y \in \mathbb{Y}_{s}$ and a function $f_{n, A, q}(x)=: f \in \mathbb{C}^{(r)} \cap$ $\Delta^{(q)}(Y)$ such that

$$
\begin{equation*}
E_{n}^{(q)}(f ; Y) \geqslant A \omega_{3}\left(f^{(r)} ; 1\right) \geqslant A 2^{-k+3} \omega_{k}\left(f^{(r)} ; 1\right), \quad k \geqslant 3, \tag{4.3}
\end{equation*}
$$

where $r=q+s-1$.
Proof. Without any loss of generality we assume $n \geqslant r+2$. We take $b \in(0,1)$ so that

$$
\frac{1}{4(s+1) b n^{2(r+1)}}-\frac{b^{r}}{4(r+2)!}=A
$$

and fix an arbitrary collection Y of points y_{i} such that $-1+b=y_{1}>$ $y_{2}>\cdots>y_{s}>-1$. Set

$$
\begin{aligned}
Q_{r+2}(x) & :=\left(x-y_{1}\right)^{r+2} ; \\
f(x) & :=\left(x-y_{1}\right)_{+}^{r+2}:= \begin{cases}Q_{r+2}(x), & \text { if } x \geqslant-1+b, \\
0, & \text { if } x<-1+b .\end{cases}
\end{aligned}
$$

Obviously $f \in \mathbb{C}^{(r)} \cap \Delta^{(q)}(Y)$. For an arbitrary polynomial $p_{n} \in \mathbb{P}_{n} \cap$ $\Delta^{(q)}(Y)$ put

$$
R_{n}(x):=p_{n}(x)-Q_{r+2}(x)
$$

and consider the divided difference $\left[y_{1}, \ldots, y_{s+1} ; R_{n}^{(q)}\right]$, where $y_{s+1}:=-1$. Since $p_{n} \in \Delta^{(q)}(Y)$, then $p_{n}^{(q)}\left(y_{i}\right)=0, i=\overline{1, s}$, whence

$$
\left[y_{1}, \ldots, y_{s+1} ; p_{n}^{(q)}\right]=\frac{p_{n}^{(q)}(-1)}{\Pi(-1)} \geqslant 0 .
$$

Put

$$
S(x):=\frac{(r+2)!}{(s+1)!}\left(x-y_{s+1}\right) \Pi(x)
$$

and note that

$$
\begin{aligned}
& S^{(s)}(x)-Q_{r+2}^{(q+s)}(x) \\
& \quad \equiv \frac{(r+2)!}{s+1}\left(\left(y_{1}-y_{2}\right)+\left(y_{1}-y_{3}\right)+\cdots+\left(y_{1}-y_{s+1}\right)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
-[& \left.y_{1}, \ldots, y_{s+1} ; Q_{r+2}^{(q)}\right] \\
& =\left[y_{1}, \ldots, y_{s+1} ; s-Q_{r+1}^{(q)}\right]=\frac{1}{s!}\left(S^{(s)}(\theta)-Q_{r+2}^{(q+s)}(\theta)\right) \\
& =\frac{(r+2)!}{(s+1)!}\left(\left(y_{1}-y_{2}\right)+\left(y_{1}-y_{2}\right)+\cdots+\left(y_{1}-y_{s+1}\right)\right) \geqslant \frac{(r+2)!}{(s+1)!} b .
\end{aligned}
$$

Hence there exists a point $\theta \in(-1,-1+b)$ such that

$$
R_{n}^{(r+1)}(\theta)=s!\left[y_{1}, \ldots, y_{s+1} ; R_{n}^{(q)}\right] \geqslant \frac{(r+2)!}{s+1} b .
$$

Applying Markov inequality we get

$$
\begin{aligned}
\frac{(r+2)!}{s+1} b & \leqslant R_{n}^{(r+1)}(\theta) \leqslant\left\|R_{n}\right\| n^{2(r+1)} \\
& \leqslant\left(\left\|f-p_{n}\right\|+\left\|f-Q_{r+2}\right\|\right) n^{2(r+1)} \\
& =\left(\left\|f-p_{n}\right\|+b^{r+2}\right) n^{2(r+1)},
\end{aligned}
$$

whence

$$
\left\|f-p_{n}\right\| \geqslant \frac{b(r+2)!}{(s+1) n^{2(r+1)}}-b^{r+2} .
$$

On the other hand,

$$
\omega_{3}\left(f^{(r)} ; 1\right)=\omega_{3}\left(f^{(r)}-Q_{r+2}^{(r)} ; 1\right) \leqslant 8\left\|f^{(r)}-Q_{r+2}^{(r)}\right\|=4 b^{2}(r+2)!.
$$

Therefore

$$
\frac{\left\|f-p_{n}\right\|}{\omega_{3}\left(f^{(r)} ; 1\right)} \geqslant \frac{1}{4 b(s+1) n^{2(r+1)}}-\frac{b^{r}}{4(r+2)!}=A .
$$

Example 4.2, Example 4.2 and its Corollary lead to
Lemma 4.1. In the case of type " \oplus ", " \ominus " and "-" Propositions $W(k, r, s, q)$ and $J(k, r, s, q)$ are false.

4.2. Cases" -"

Everywhere below we will use the following notations. For a fixed collection $Y \in \mathbb{Y}_{s}$ put

$$
\begin{aligned}
\Pi_{1}(x) & :=\Pi_{1}(x ; Y):=\prod_{i=2}^{s}\left(x-y_{i}\right) \quad\left(=\Pi(x) /\left(x-y_{1}\right), x \neq y_{1}\right), \\
d & :=d(Y):=\frac{1}{2} \min \left\{1-y_{1}, y_{1}-y_{2}\right\},
\end{aligned}
$$

if $s>1$. If $s=1$, then we put

$$
\Pi_{1}(x):=1, \quad d:=d(Y):=\frac{1}{2}\left(1-\left|y_{1}\right|\right) .
$$

Put

$$
M_{0}:=M_{0}(Y):=\left\|\Pi_{1}\right\|, \quad M:=M(Y):=\Pi_{1}\left(y_{1}\right)
$$

and note,

$$
0<M \leqslant M_{0} \leqslant 2^{s-1} .
$$

Example 4.3. For every n and $A>0$, and for each $s, Y \in \mathbb{Y}_{s}, k>s+1$ and q, there is a function $f(x)=f(x ; q, k, n, Y, A)$ such that $f \in \Delta^{(q)}(Y) \cap$ $\mathbb{C}^{(q-1)}$ and

$$
\begin{equation*}
E_{n}^{(q)}(f ; Y)>A \omega_{k}\left(f^{(q-1)} ; 1\right) . \tag{4.4}
\end{equation*}
$$

Proof. Without any loss of generality assume $n \geqslant k+q-2$. For a fixed $b \in(0, d)$ set

$$
\begin{aligned}
Q_{s+q}(x) & :=q_{s+q}(x ; b):=\frac{1}{(q-1)!} \int_{y_{1}}^{x}(x-u)^{q-1}\left(u-y_{1}-b\right) \Pi_{1}(u) d u \\
\left(x-y_{1}-b\right)^{*} & := \begin{cases}0, & \text { if } x \in\left[y_{1}, y_{1}+b\right], \\
x-y_{1}-b, & \text { otherwise; }\end{cases} \\
g(x) & :=g(x ; b):=\frac{1}{(q-1)!} \int_{y_{1}}^{x}(x-u)^{q-1}\left(y-y_{1}-b\right)^{*} \Pi_{1}(u) d u .
\end{aligned}
$$

Clearly, $g \in \Delta^{(q)}(Y) \cap \mathbb{C}^{(q-1)}$. For an arbitrary polynomial $p_{n} \in \mathbb{P}_{n} \cap$ $\Delta^{(q)}(Y)$ put

$$
r_{n}(x):=p_{n}(x)-Q_{s+q}(x)
$$

and observe that

$$
\begin{equation*}
r_{n}^{(q)}\left(y_{1}\right)=-Q_{s+q}^{(q)}\left(y_{1}\right)=b \Pi_{1}\left(y_{1}\right)=b M . \tag{4.5}
\end{equation*}
$$

Applying Markov inequality

$$
\left\|r_{n}^{(q)}\right\| \leqslant n^{2 q}\left\|r_{n}\right\|
$$

we get

$$
b M=r_{n}^{(q)}\left(y_{1}\right) \leqslant n^{2 q}\left\|r_{n}\right\|,
$$

whence

$$
\begin{aligned}
\frac{b M}{n^{2 q}} & \leqslant\left\|r_{n}\right\| \leqslant\left\|p_{n}-g\right\|+\left\|g-Q_{s+q}\right\| \\
& \leqslant\left\|p_{n}-g\right\|+\frac{2^{q-1} M_{0}}{(q-1)!} \int_{y_{1}}^{y_{1}+b}\left(y_{1}+b-u\right) d u \leqslant\left\|p_{n}-g\right\|+M_{0} b^{2},
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\left\|p_{n}-g\right\| \geqslant \frac{b M}{n^{2 q}}-M_{0} b^{2}=\frac{b M}{n^{2 q}}\left(1-\frac{M_{0} b n^{2 q}}{M}\right) . \tag{4.6}
\end{equation*}
$$

On the other hand we have

$$
\begin{align*}
\omega_{k}\left(g^{(q-1)} ; 1\right) & =\omega_{k}\left(g^{(q-1)}-Q_{s+q}^{(q-1)} ; 1\right) \leqslant 2^{k}\left\|g^{(q-1)}-Q_{s+q}^{(q-1)}\right\| \\
& =2^{k} \int_{y_{1}}^{y_{1}+b}\left(b+y_{1}-u\right) \Pi_{1}(u) d u \leqslant 2^{k-1} M_{0} b^{2} . \tag{4.7}
\end{align*}
$$

Now, in order to prove (4.4) we take

$$
b_{n}:=\frac{1}{2^{k}} \frac{M d}{M_{0}(A+1)}\left(\frac{1}{n}\right)^{2 q}, \quad f(x):=g\left(x ; b_{n}\right),
$$

and note that $b_{n}<d$. It follows from (4.6) and (4.7) that

$$
\frac{\left\|p_{n}-f\right\|}{\omega_{k}\left(f^{(q-1)} ; 1\right)} \geqslant \frac{b_{n} M}{n^{2 q}}\left(1-\frac{1}{2}\right) \frac{1}{2^{k-1} b_{n}^{2} M_{0}}=\frac{A+1}{d}>A
$$

Corollary. For each $s, q, Y \in \mathbb{Y}_{s}, r<q, k>q+s-r, n$ and $A>0$ there is a function $f(x)=f(x ; q, r, k, n, Y, A)$ such that $f \in \Delta^{(q)}(Y) \cap \mathbb{C}^{(r)}$ and

$$
\begin{equation*}
E_{n}^{(q)}(f ; Y)>A \omega_{k}\left(f^{(r)} ; 1\right) . \tag{4.8}
\end{equation*}
$$

Indeed, for $r=q-1$ such function is constructed in Example 4.3; for $r<q-1$ one can take the same function and use the inequality $\omega_{k+r+1-q}\left(f^{(q-1)} ; 1\right) \geqslant \omega_{k}\left(f^{(r)} ; 1\right)$.

Example 4.4. For every n and $A>0$, and for each $s, Y \in \mathbb{Y}_{s}, k>s+2$ and q, there is a function $f(x)=f(x ; q, k, n, Y, A)$ such that $f \in \Delta^{(q)}(Y) \cap$ $\mathbb{C}^{(q)}$ and

$$
\begin{equation*}
E_{n}^{(q)}(f ; Y)>A \omega_{k}\left(f^{(q)} ; 1\right) . \tag{4.9}
\end{equation*}
$$

Proof. Without any loss of generality assume $n \geqslant k+q-1$. For a fixed $b \in(0, d)$ set

$$
\begin{aligned}
Q_{s+q+2}(x) & :=Q_{s+q+2}(x ; b) \\
& :=\frac{1}{(q-1)!} \int_{y_{1}}^{x}(x-u)^{q-1}\left(\left(u-y_{1}\right)^{2}-b^{2}\right) \Pi(u) d u \\
\left(\left(x-y_{1}\right)^{2}-b^{2}\right)_{+} & := \begin{cases}0, & \text { if }\left(x-y_{1}\right)^{2} \leqslant b^{2} \\
\left(x-y_{1}\right)^{2}-b^{2}, & \text { otherwise; }\end{cases} \\
g(x) & =: g(x ; b) \\
& =: \frac{1}{(q-1)!} \int_{y_{1}}^{x}(x-u)^{q-1}\left(\left(u-y_{1}\right)^{2}-b^{2}\right)_{+} \Pi(u) d u
\end{aligned}
$$

Clearly, $g \in \Delta^{(q)}(Y) \cap \mathbb{C}^{(q)}$. For an arbitrarily polynomial $p_{n} \in \mathbb{P}_{n} \cap \Delta^{(q)}(Y)$ put

$$
r_{n}(x):=p_{n}(x)-Q_{s+q+2}(x) .
$$

Since $p_{n} \in \Delta^{(q)}(Y)$, then $p_{n}^{(q+1)}\left(y_{1}\right) \geqslant 0$, whence

$$
\begin{align*}
r_{n}^{(q+1)}\left(y_{1}\right) & =p_{n}^{(q+1)}\left(y_{1}\right)-Q_{s+q+2}^{(q+1)}\left(y_{1}\right) \\
& \geqslant-Q_{s+q+2}^{(q+1)}\left(y_{1}\right)=b^{2} \Pi^{\prime}\left(y_{1}\right)=b^{2} \Pi \Pi_{1}\left(y_{1}\right)=b^{2} M . \tag{4.10}
\end{align*}
$$

Applying Markov inequality

$$
\left\|r_{n}^{(q+1)}\right\| \leqslant n^{2(q+1)}\left\|r_{n}\right\|
$$

we get

$$
M b^{2} \leqslant\left\|r_{n}^{(q+1)}\right\| \leqslant n^{2(q+1)}\left\|r_{n}\right\|,
$$

whence

$$
\begin{aligned}
\frac{M b^{2}}{n^{2(q+1)}} & \leqslant\left\|r_{n}\right\| \leqslant\left\|p_{n}-g\right\|=\left\|g-Q_{s+q+2}\right\| \\
& \leqslant\left\|p_{n}-g\right\|+\frac{2^{q-1} M_{0}}{(q-1)!} \int_{y_{1}}^{y_{1}+b}\left(b^{2}-\left(u-y_{1}\right)^{2}\right)\left(u-y_{1}\right) d u \\
& <\left\|p_{n}-g\right\|+M_{0} b^{4},
\end{aligned}
$$

where we used the identity $\Pi(u)=\left(u-y_{1}\right) \Pi_{1}(u)$. Hence

$$
\begin{equation*}
\left\|p_{n}-g\right\| \geqslant \frac{M b^{2}}{n^{2(q+1)}}-M_{0} b^{4}=\frac{M b^{2}}{n^{2(q+1)}}\left(1-\frac{M_{0} b^{2} n^{2(q+1)}}{M}\right) . \tag{4.11}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
\omega_{k}\left(g^{(q)} ; t\right) & =\omega_{k}\left(g^{(q)}-Q_{s+q+2}^{(q)} ; t\right) \\
& \leqslant 2^{k}\left\|g^{(q)}-Q_{s+q+2}^{(q)}\right\|<2^{k-1} M_{0} b^{3} . \tag{4.12}
\end{align*}
$$

In order to prove (4.9) we take

$$
b_{n}:=\frac{M d}{M_{0} 2^{k}(A+1)}\left(\frac{1}{n}\right)^{2(q+1)}, \quad f(x):=g\left(x ; b_{n}\right),
$$

and note that $b_{n}<d$. It follows from (4.11) and (4.12) that

$$
\frac{\left\|p_{n}-f\right\|}{\omega_{k}\left(f^{(q)} ; 1\right)} \geqslant \frac{b_{n}^{2} M}{n^{2(q+1)}}\left(1-\frac{1}{2}\right) \frac{1}{2^{k-1} b_{n}^{3} M_{0}}=\frac{A+1}{d}>A .
$$

Example 4.4, Example 4.3 and its Corollary lead to
Lemma 4.2. In the cases of type "-" Propositions $W(k, r, s, q, Y)$ and $J(k, r, s, q, Y)$ are false for each $Y \in \mathbb{Y}_{s}$.

Thus the proof of Theorem 2 is completed.
To end the proof of Theorem 4 we have to consider cases of type " \ominus ".

4.3. Cases " \ominus "

Remark, we do not have the cases of type " \ominus " when $s=1$.
Example 4.5. For every n and for each $s \neq 1, Y \in \mathbb{Y}_{s}, k>2$ and q, there is a function $f(x):=f(x ; k, n, q, Y)$ such that $f \in \Delta^{(q)}(Y) \cap \mathbb{C}^{(q-1)}$ and

$$
\begin{equation*}
E_{n}^{(q)}(f ; Y)>B_{Y} n^{(k / 2)-1} \frac{1}{n^{q-1}} \omega_{k}\left(f^{(q-1)} ; \frac{1}{n}\right) . \tag{4.13}
\end{equation*}
$$

Proof. We use the notation of Example 4.3 and repeat its arguments up to (4.5). Thus we have

$$
r_{n}^{(q)}\left(y_{1}\right)=b M .
$$

Using Dzyadyk inequality

$$
r_{n}^{(q)}\left(y_{1}\right) \rho_{n}^{q}\left(y_{1}\right) \leqslant c\left\|r_{n}^{(q-1)} \rho_{n}^{q-1}\right\|,
$$

and Leviatan inequality (2.4), we get

$$
\begin{aligned}
b M \rho_{n}^{q}\left(y_{1}\right) \leqslant & c\left\|r_{n}^{(q-1)} \rho_{n}^{q-1}\right\| \\
\leqslant & c\left\|\left(p_{n}^{(q-1)}-g^{(q-1)}\right) \rho_{n}^{q-1}\right\|+c\left\|\left(g^{(q-1)}-Q_{s+q}^{(q-1)}\right) \rho_{n}^{q-1}\right\| \\
\leqslant & c\left\|p_{n}-g\right\|+\frac{c}{n^{q-1}} E_{n-q+1}\left(g^{(q-1)}\right) \\
& +c\left\|\rho_{n}^{q-1}\right\|\left\|g^{(q-1)}-Q_{s+q}^{(q-1)}\right\| \\
\leqslant & c\left\|p_{n}-g\right\|+\frac{c}{n^{q-1}}\left\|g^{(q-1)}-Q_{s+q}^{(q-1)}\right\| \leqslant c\left\|p_{n}-g\right\|+\frac{c b^{2}}{n^{q-1}} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\omega_{k}\left(g^{(q-1)} ; \frac{1}{n}\right) & \leqslant \omega_{k}\left(g^{(q-1)}-Q_{s+q}^{(q-1)} ; \frac{1}{n}\right)+\omega_{k}\left(Q_{s+q}^{(q-1)} ; \frac{1}{n}\right) \\
& \leqslant 2^{k}\left\|g^{(q-1)}-Q_{s+q}^{(q-1)}\right\|+\frac{1}{n^{k}}\left\|Q_{s+q}^{(q-1+k)}\right\| \\
& \leqslant c\left(b^{2}+\frac{1}{n^{k}}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \frac{\left\|p_{n}-g\right\| n^{q-1}}{\omega_{k}\left(g^{(q-1)} ; \frac{1}{n}\right)} \geqslant \frac{c b M \rho_{n}^{q}\left(y_{1}\right) n^{q-1}-c\left(b^{2}+\frac{1}{n^{k}}\right)}{c\left(b^{2}+\frac{1}{n^{k}}\right)}-c^{*} \\
&>\frac{c b M\left(1-y^{2}\right)^{q / 2}}{n\left(b^{2}+\frac{1}{n^{k}}\right)}-c^{*}=: 4 B_{Y} \frac{b}{n\left(b^{2}+\frac{1}{n^{k}}\right)}-c^{*}
\end{aligned}
$$

where we used the inequality $\rho_{n}\left(y_{1}\right)>\sqrt{1-y_{1}^{2}} / n$. Now, to prove (4.13) let us take

$$
b_{n}:=\frac{1}{n^{k / 2}}, \quad f(x):=g\left(x ; b_{n}\right)
$$

So we obtain

$$
\begin{aligned}
\frac{\left\|p_{n}-f\right\| n^{q-1}}{\omega_{k}\left(f^{(q-1)} ; \frac{1}{n}\right)} & \geqslant 2 B_{Y} n^{(k / 2)-1}-c^{*} \\
& =B_{Y} n^{(k / 2)-1}\left(2-\frac{c^{*}}{B_{Y} n^{(k / 2)-1}}\right) \geqslant B_{Y} n^{(k / 2)-1}
\end{aligned}
$$

for all $n \geqslant N:=N(Y)$, where the integer N is chosen so that

$$
\begin{equation*}
c^{*} \leqslant B_{Y} N^{(k / 2)-1}, \quad b_{N}<d, \quad N \geqslant k+q-2 \tag{4.13}
\end{equation*}
$$

Thus for $n \geqslant N(Y)$ the inequality (4.13) is proved. For $n<N(Y)$ follows from the inequality $E_{n}^{(q)}(f ; Y) \geqslant E_{N}^{(q)}(f ; Y)$.

Corollary. For each $s \neq 1, Y \in \mathbb{Y}_{s}, q, r<q, k>q-r+1$ and n there is a function $f(x)=f(x ; q, k, r, n, Y)$ such that $f \in \Delta^{(q)}(Y) \cap \mathbb{C}^{(r)}$ and

$$
E_{n}^{(q)}(f ; Y)>B_{Y} n^{(k+r-1-q) / 2} \frac{1}{n^{r}} \omega_{k}\left(f^{(r)} ; \frac{1}{n}\right) \geqslant B_{Y} \sqrt{n} \frac{1}{n^{r}} \omega_{k}\left(f^{(r)} ; \frac{1}{n}\right) .
$$

Indeed, for $r=q-1$ such function is constructed in Example 4.5; for $r<q-1$ one can take the same function and use the inequality $t^{q-1-r} \omega_{k+r+1-q}\left(f^{(q-1)} ; t\right) \geqslant \omega_{k}\left(f^{(r)} ; t\right)$.

Example 4.6. For every n and for each $s \neq 1, Y \in \mathbb{Y}_{s}, k>3$ and q, there is a function $f(x):=f(x ; Y, k, n, q)$ such that $f \in \Delta^{(q)}(Y) \cap \mathbb{C}^{(q)}$ and

$$
\begin{equation*}
E_{n}^{(q)}(f ; Y)>B_{Y} n^{(k / \beta)-1} \frac{1}{n^{q}} \omega_{k}\left(f^{(q)} ; \frac{1}{n}\right) . \tag{4.16}
\end{equation*}
$$

Proof. We use the notation of the Example 4.4 and repeat its argument up to (4.10). Thus we have

$$
r_{n}^{(q+1)}\left(y_{1}\right) \geqslant b^{2} M .
$$

Using Dzyadyk inequality

$$
r_{n}^{(q+1)}\left(y_{1}\right) \rho_{n}^{q+1}\left(y_{1}\right) \leqslant c\left\|r_{n}^{(q)} \rho_{n}^{q}\right\|,
$$

and Leviatan inequality (2.4), we get

$$
\begin{aligned}
b^{2} M \rho_{n}^{q+1}\left(y_{1}\right) & \leqslant c\left\|r_{n}^{(q)} \rho_{n}^{q}\right\| \\
& \leqslant c\left\|\left(p_{n}^{(q)}-g^{(q)}\right) \rho_{n}^{q}\right\|+c\left\|\left(g^{(q)}-Q_{s+q+2}^{(q)}\right) \rho_{n}^{q}\right\| \\
& \leqslant c\left\|p_{n}-g\right\|+\frac{c}{n^{q}} E_{n-q}\left(g^{(q)}\right)+c\left\|\rho_{n}^{q}\right\|\left\|g^{(q)}-Q_{s+q+2}^{(q)}\right\| \\
& \leqslant c\left\|p_{n}-g\right\|+\frac{c}{n^{q}}\left\|g^{(q)}-Q_{s+q+2}^{(q)}\right\| \leqslant c\left\|p_{n}-g\right\|+\frac{c b^{3}}{n^{q}} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\omega_{k}\left(g^{(q)} ; \frac{1}{n}\right) & \leqslant \omega_{k}\left(g^{(q)}-Q_{s+q+2}^{(q)} ; \frac{1}{n}\right)+\omega_{k}\left(Q_{s+q+2}^{(q)} ; \frac{1}{n}\right) \\
& \leqslant 2^{k-1} M_{0} b^{3}+\frac{1}{n^{k}}\left\|Q_{s+q+2}^{(q+k)}\right\| \leqslant c\left(b^{3}+\frac{1}{n^{k}}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{\left\|p_{n}-g\right\| n^{q}}{\omega_{k}\left(f^{(q)} ; \frac{1}{n}\right)} & \geqslant \frac{c M \rho_{n}^{q+1}\left(y_{1}\right) b^{2} n^{q}-c\left(b^{3}+\frac{1}{n^{k}}\right)}{c\left(b^{3}+\frac{1}{n^{k}}\right)} \\
& =: \frac{c M \rho_{n}^{q+1}\left(y_{1}\right) b^{2} n^{q}}{c\left(b^{3}+\frac{1}{n^{k}}\right)}-c^{*} \\
& >c M\left(1+y_{1}\right)^{(q+1) / 2} \frac{b^{2}}{n\left(b^{3}+\frac{1}{n^{k}}\right)}-c^{*} \\
& =: 4 B_{Y} \frac{b^{2}}{n\left(b^{3}+\frac{1}{n^{k}}\right)}-c^{*} .
\end{aligned}
$$

Now, in order to prove (4.14) we take

$$
b_{n}:=\frac{1}{n^{k / 3}}, \quad f(x):=g\left(x ; b_{n}\right)
$$

So we obtain

$$
\begin{aligned}
\frac{\left\|p_{n}-f\right\|}{\omega_{k}\left(f^{(q)} ; \frac{1}{n}\right)} & >2 B_{Y} n^{(k / 3)-1}-c^{*} \\
& =B_{Y} n^{(k / 3)-1}\left(2-\frac{c^{*}}{B_{Y} n^{(k / 3)-1}}\right) \geqslant B_{Y} n^{(k / 3)-1}
\end{aligned}
$$

for all $n \geqslant N:=N(Y)$, where the integer N is chosen so that

$$
c^{*} \leqslant B_{Y} N^{(k / 3)-1}, \quad b_{N}<d, \quad N \geqslant k+q-1
$$

Thus for $n \geqslant N(Y)$ the inequality (4.14) is proved. For $n<N(Y)$ (4.14) follows from the inequality $E_{n}^{(q)}(f ; Y) \geqslant E_{N}^{(q)}(f ; Y)$.

Lemma 4.2, Example 4.6, Example 4.5 and its Corollary lead to
Lemma 4.3. In the cases of type " \ominus " and " - "Proposition $J(k, r, s, q, Y)$ is false for each $Y \in \mathbb{Y}_{s}$.

Theorem 4 is proved.

ACKNOWLEDGMENTS

The authors are indebted to Professors J. Gilewicz and I. A. Shevchuk for their permanent attention and help in publishing preprint [11]. We thank Professor D. Leviatan and the referees for many important remarks.

REFERENCES

1. R. K. Beatson and D. Leviatan, On comonotone approximation, Canad. Math. Bull. 26 (1983), 220-224.
2. R. A. DeVore and G. F. Lorentz, "Constructive Approximation," Springer-Verlag, Berlin, 1993.
3. V. K. Dzyadyk, On a constructive characteristic of functions, satisfying Lipschitz condition Lip $(0<\alpha<1)$ on a finite intersept of a straight line [in Russian], Izv. Akad. Nauk SSSR Ser. Math. 20 (1956), 623-642.
4. G. A. Dzyubenko, J. Gilewicz, and I. A. Shevchuk, Piecewise monotone pointwise approximation, Constr. Approx. 14 (1998), 311-348.
5. J. Gilewicz and I. A. Shevchuk, Comonotone approximation [in Russian], Fund. Prikladnaya Math. 2 (1996), 319-363.
6. G. L. Iliev, Exact estimates for partially monotone approximation, Anal. Math. 4 (1978), 181-197.
7. K. Kopotun, D. Leviatan, and I. A. Shevchuk, The degree of coconvex polynomial approximation, Proc. Amer. Math. Soc. 127 (1999), 409-415.
8. D. Leviatan, The behavior of the derivatives of the algebraic polynomials of best approximation, J. Approx. Theory 35 (1983), 169-176.
9. G. G. Lorentz and K. L. Zeller, Degree of approximation by monotone polynomials, II, J. Approx. Theory 2 (1969), 265-269.
10. D. J. Newman, Efficient comonotone approximation, J. Approx. Theory 25 (1979), 189-192.
11. M. Pleshakov and A. V. Shatalina, Piecewise coapproximation and Whitney's inequality, preprint CPT 95/P.3204, Luminy, Marseille, 1995.
12. I. A. Shevchuk, Whitney's inequality and coapproximation, East J. Approx. 1 (1995), 479-500.
13. A. S. Shvedov, Orders of coapproximation of functions by algebraic polynomials, Math. Zametki 29 (1981), 117-130; English transl. in Math. Notes 29 (1981), 63-70.
14. H. Whitney, On functions with bounded nth differences, J. Math. Pures. Appl. 6 (1957), 67-95.
15. S. P. Zhou, On comonotone approximation by polynomials in L^{p} space, Analysis $\mathbf{1 3}$ (1993), 363-376.

[^0]: ${ }^{1}$ This work was supported by RFBR, the grant 99-01-01120, and partially the program 00-15-96123.

